|
|
请使用QQ关联注册PLM之家,学习更多关于内容,更多精彩原创视频供你学习!
您需要 登录 才可以下载或查看,没有账号?注册
x
+ `! O/ x1 B+ j
# Y9 A4 g4 m/ {1 ?
! F2 m; B% o& {" ]# v. P( U6 _3 R
1 S7 c# Y( Z9 e: n
- /******************************************************************************
% A/ _+ t- l0 f. C, t' ^ - Copyright (c) 1999 Unigraphics Solutions, Inc.
$ ]: l7 J7 y3 Y& B - Unpublished - All Rights Reserved9 i# ^1 O4 L L1 r3 V4 V* }8 u
9 }6 i" F ^3 |6 [- X- *******************************************************************************/
( K- l/ H7 _6 h - /* This example demonstrates the UF_EVAL api for lines and arcs.; T: ~; b( q# S; u+ X0 E
- Some of the UF_EVAL routines operate on an evaluator* D( O) V7 c3 N# G6 ?
- independent of type while others are type dependent. No longer use# |$ G3 z+ f' Q* F$ v) R+ d
- UF_CURVE_ask_curve_struct ( ),
5 j3 a! e- F$ G8 M _ - UF_CURVE_ask_curve_struct_data ( ) and; k* r# D z% q9 n G
- UF_CURVE_free_curve_struct ( )
( v. B% d% D! x9 i: ~7 c3 ~ - */
$ o) K9 P. m3 i; ? U) o6 g
) b8 }6 D8 k) n2 T0 J" X: e6 E, S) I3 g- #include <stdio.h>
9 e5 `* D8 f3 E1 c, x - #include <uf_object_types.h>/ H2 b4 i* u9 d4 @0 ]
- #include <uf_curve.h>& u' }1 {* |4 d! m5 b' R
- #include <uf_eval.h>6 C# a6 L. z0 ^8 @& T
- #include <uf_modl.h>: N# k& j7 o0 A3 I: A; [
- #include <uf_part.h>
$ `: l9 P& _+ l5 j - #include <uf_so.h>
+ g, f- K6 |( J - #include <uf.h>" r; u. F* Q& W) }- v4 b% ^
- #define UF_CALL( X ) ( report ( __FILE__, __LINE__, #X, ( X ) ) )
3 _, o1 l, E+ h- h( G" ~0 N - static void show_edge_points(UF_EVAL_p_t eval, int n_pts);
. L7 G9 X7 K. J K- C) x1 t - /*---------------------------------------------------------------*/- p, X2 v+ G3 C5 h D, h9 S
- static int report ( char *file, int line, char *call, int irc )
7 Y% z) ^, {( z7 S* s% A. W6 F - {* k3 _3 T, L8 y* K
- if ( irc )3 V: K1 R |6 N+ x/ M9 `: r% d
- {- ^" V2 l- X5 W6 f8 |
- char message [ 132 + 1 ];6 x2 }6 t$ a# H" G2 ]
- printf ( "%s, line %d: %s\n", file, line, call );
. Z+ G+ M/ E7 S# O- ^) @+ ^ - UF_get_fail_message ( irc, message ) ?
1 m; J3 H3 }4 a) u' k( { - printf ( " error %d\n", irc ) :2 P. D0 F. C! H1 O/ v
- printf ( " error %d: %s\n", irc, message );
: ]9 Z4 r: ~ o7 i$ W- o - }% a- n% d9 v$ g; d x
- return irc;, K( Z5 W, O" F0 S1 U5 R6 P' {) q
- }7 r+ g3 z5 m" S; d4 f$ C
- /*---------------------------------------------------------------*/
/ ?, x: G) C# H& f% Y# b6 ?; X - int ufusr_ask_unload ( void )
: @1 M- @) C1 n+ y% P/ [/ |* g# U - {
$ h# p8 z9 p" _! ?9 B! z- L8 I2 |1 P - return UF_UNLOAD_IMMEDIATELY;
0 G) b& H @8 i6 P2 s( D/ q1 K - }! b+ J2 A) z# ~' F' p/ p; C; i! C
- /*---------------------------------------------------------------*/1 A. b+ p6 H8 I. p4 _7 D
- /* ARGSUSED */" I& m, I5 [- K; h
- extern void ufusr ( char *param, int *reTCod, int param_len )5 V. Z0 {: x/ e# D
- {" \& W0 X2 R. `5 q7 o8 e
- tag_t line;
9 H4 Q- Z* }9 F) {0 u* ` - tag_t arc;; i1 g6 a7 w' }0 B0 F5 O, U/ M3 p
- tag_t edge;) E9 c# x0 b0 V0 m/ M4 E
- tag_t edges [ 3 ];
3 n, w) {# P# k% S5 B. k) T - UF_EVAL_p_t line_evaluator;& N! U" D* M% s8 ?9 P& y
- UF_EVAL_p_t arc_evaluator;/ f7 S) `1 q, B* ?
- UF_EVAL_p_t edge_evaluator;" o( f6 F$ L# [' U( r' v
- UF_CALL ( UF_initialize ( ) );
+ k% `7 ~" y4 `& W( A5 X& M - /*
. n0 V% C2 |- x- Q - Create new part "ufd_eval.prt".% {% E" @( |( R! a4 O* V% O
-
* u ^' [, w7 {) s - Close part if it already exists.! \ J$ i; h' k: ~ @( [
- */
. ]* y" `6 V. \ - {
, D% ?5 j# m* _( q) j - tag_t part = UF_PART_ask_part_tag ( "ufd_eval.prt" );
9 {, x# w' F8 ~; g" Y - if ( part != NULL_TAG ). F& a4 c' J9 B
- {$ U H) N6 @) A4 f# R
- UF_CALL ( UF_PART_close ( part, 0, 1 ) );5 Y4 A. E5 h8 F1 D9 S
- }: W5 ^% B/ u2 `
- UF_CALL ( UF_PART_new ( "UGd_eval.prt", 8 N: o6 h3 v- c5 J
- UF_PART_ENGLISH,
* m# r& A# ?; ?# ~: N( T( e0 g9 i - &part ) );/ g1 K, V: B& G
- }
& ~* ~, B. x# S* K: d) c - /* . V0 l: ~ \: W8 [8 [
- Create block and get edges. , L+ f s6 w8 x4 Z2 G2 [. J
- */" [; i. u2 H C) D% {, b
- {4 \; G4 `% m1 w' Q3 C$ Z
- double origin [ ] = { 0.0, 0.0, 0.0 };# q; D6 T& N) I& P. q- ? w
- char *sizes [ ] = { "1", "1", "1" };1 f- X9 D8 V% v0 \& A
- tag_t block_feature;" |7 q9 y8 u1 [- _
-
( q- r- ?7 }& }3 I: q - UF_CALL ( UF_MODL_create_block1 ( UF_NULLSIGN, 6 u; k8 ~& g; H3 u( A+ O* B
- origin, 9 z( ] e( k3 n5 J* m+ x: Q. @ r
- sizes, 9 ?! J1 h4 P1 Y7 |1 F5 ~/ K" U
- &block_feature ) );
( O b0 P% d r F5 z" R8 ~9 U - {
( X5 c& O, m6 s) f' L - uf_list_p_t edge_list;* W( m- F$ e' U5 B
- UF_CALL ( UF_MODL_ask_feat_edges ( block_feature, 2 [) ~8 e( v' n( m) h1 N1 R; X8 m
- &edge_list ) );; z9 \( Y* w X- a
-
" M9 Z& ]7 `4 @ - UF_CALL ( UF_MODL_ask_list_item ( edge_list,
( @! b" K7 G# f - 1,
# f# f- z; Q; w - &edge ) );
0 O8 o7 w. }7 }6 C/ @ - edges [ 0 ] = edge;
! n! V( I" Z) b/ V3 u* s( P - edges [ 1 ] = edge;/ `& Z0 D9 P! X$ d; A
- UF_CALL ( UF_MODL_ask_list_item ( edge_list, ' ]) e4 c1 ^" X& K/ d: d
- 0, ( H/ l- u/ H* t0 l8 M% I4 [4 u
- &edges [ 2 ] ) );
# \7 }5 V; k6 ^& i7 h( s - UF_CALL ( UF_MODL_delete_list ( &edge_list ) );
; ? h3 o' }8 g9 h - }
6 Y$ H; i) h9 ^ - } x# P5 \: f. @; D+ e+ s8 O
- /*
, e# p* {$ u, [! W! A5 g" e* C - Create smart line." `9 o% q: [# E$ x: A
- */
( n1 @$ {; s! `) U, ^# J - UF_CALL ( UF_SO_create_curve_extract I+ F7 ?. K; i4 b! e! s/ P5 m; C
- (
( B. ~6 \) z$ a - edge,
" V4 m0 D P5 u, `6 d" U - UF_SO_update_after_modeling, # G W. y6 n+ i$ y6 X+ H
- edge,+ @, t' W/ I ~3 f& s5 I
- UF_line_type, /* enforce line type */
' s) o5 w0 X9 g& o1 v" b. C8 F0 | - 0, /* no subtype to enforce */
& ^$ e1 h! c) ?9 I0 b3 {* F" E# _, X - NULL_TAG,
, O# n2 K2 u; D6 j* B" c# p - &line + D* e+ R: K: a1 r2 s) P
- ) );
* \% N* z3 `4 B5 f - 4 G: f; V: D2 e F
- /*
. v4 I8 o4 E8 X, x7 y( V - Create smart arc.
* j: M0 c# O3 v3 M - */
1 z! [9 r- ?: o9 N2 J9 ?" m6 U- y - {
0 h# c7 b! T4 o8 c- k - int i;
1 _$ P# v# F. o8 K `6 h% f8 x% } - tag_t points [ 3 ];
$ o+ {8 q c7 g9 W6 A8 f: j. i$ M" E - for ( i = 0; i < 3; i++ )
' r i' n- S( C; S6 ]5 B- R' K' T - {8 \3 J8 c7 H L* ]8 Y# W7 Z
- char *strings [ ] = { "center=1.0",
: G9 ~6 t _, _6 a6 Z2 ~# t& w - "start=0.0", 3 C: ^3 c0 {) V( h; t4 b8 B# N
- "end=1.0" };: D: G" b# k/ ^
- tag_t exps [ 3 ];5 t* X4 s" l& [5 u7 o
- tag_t scalars [ 3 ];
$ ?* q* u( Q9 y( |- T& Q5 q' M - UF_CALL ( UF_MODL_create_exp_tag ( strings [ i ],
8 }% V6 x: o1 A, y. e" x - &exps [ i ] ) );* P0 h6 M0 \: p, [( u0 K
- UF_CALL ( UF_SO_create_scalar_exp
2 Q$ J. d7 K3 c# H7 h - (
r& C* u" r9 r- X - exps [ i ],3 [# u( W$ _* m! J, r- Z
- UF_SO_update_after_modeling,
: c t! _4 m! E/ i# w6 H) L - exps [ i ], - x4 D) c9 d/ R' C9 \- Q
- &scalars [ i ]" ], [- F- L6 E" B
- ) );
8 t) B R) @9 n' H' X - UF_CALL ( UF_SO_create_point_on_curve
# E+ h* ?' X& y0 V2 D- b3 x7 r - (# n' i6 o6 Y% g9 T0 E
- edges [ i ],- G& }5 z t, S/ _- F
- UF_SO_update_after_modeling, - _! Y, c; @! q" {9 ?; w) B2 \
- edges [ i ],5 R2 x( T+ ~% n- t! @0 m9 S
- scalars [ i ],
1 o, [! t" \+ j6 A" r/ B% B8 [' g - &points [ i ]& H6 l6 g3 F$ q# L
- ) );
4 g. U; i9 J, U0 p - }/ t0 W' f# T9 H
- UF_CALL ( UF_SO_create_arc_center_2_pnts
$ [& c: {! T/ }- U, ~& V - (
, o1 _, ^1 Y8 P0 m: p - points [ 0 ],
6 B6 e2 \! r# }1 f$ x% [ - UF_SO_update_after_modeling,
% Q a) o* a4 m3 m0 S* b4 K4 a - points,
% n# K0 f/ H% T" }4 g; [ - &arc : a0 x; e! z5 i% G/ h7 e
- ) );
$ x( M3 i4 v5 K7 f$ {0 E5 k, t - }% ~0 B6 H/ D7 s
-
+ ^7 }( ]( `. D# b1 p* \. e3 I - /* 5 H2 p1 g: u. f: \9 Y& \
- Smart objects are created as invisible objects by + J7 j/ Y9 v" k* q. |/ |
- default. UF_SO_set_visibility_option ( ) can be
' v$ N* j8 d/ k' d) s( P - used to make them visible in the graphics window.
+ _; x* k9 o0 I' R - */4 ?# H2 j- t8 w% t
- UF_CALL ( UF_SO_set_visibility_option ( line, + g' O- v! X1 w) d) d
- UF_SO_visible ) ); x6 B9 y: c. ?- T* u3 Q7 V- I9 X
- UF_CALL ( UF_SO_set_visibility_option ( arc,
3 G& G. J: A @6 w: v - UF_SO_visible ) );' E! G, H( V+ A
- /* , h! `# ?1 I) i& O- \" X# }
- Get line/arc/edge evaluators.
: [0 O! L9 P4 ~ - */( t7 {* O$ n# Z7 x
- UF_CALL ( UF_EVAL_initialize ( line, &line_evaluator ) );
& k- U( v, F' N `) a0 D - UF_CALL ( UF_EVAL_initialize ( arc, &arc_evaluator ) );% g7 R+ U- L" |$ k
- UF_CALL ( UF_EVAL_initialize ( edge, &edge_evaluator ) );: _4 m; g8 l9 S, D' s1 Z% A
- show_edge_points(line_evaluator, 10);
- P h: v: N+ S - show_edge_points(arc_evaluator, 10);
& `" G% L s1 L l& a) q3 G - show_edge_points(edge_evaluator, 10);9 }& c/ D) T& S. Y5 d4 o g
- /* 5 | l6 S9 {2 h
- Get line/arc/edge data.
6 y7 j8 N" r. o3 P9 I; K1 j0 |1 V - */
6 q6 N8 p8 e) \4 S; m7 Y - {
: D- F8 l, N9 W- w! b5 \' N - UF_EVAL_line_t line_data;" G9 q! U! Y0 ? }) ?* U
- UF_EVAL_arc_t arc_data;
; o& B: N7 M% `& C - UF_EVAL_line_t edge_data;6 n* ^0 f" x1 q
- UF_CALL ( UF_EVAL_ask_line ( line_evaluator, % h& E$ \4 {4 E( h. G
- &line_data ) );+ _1 ^4 L8 Z) `" P: C" V! y# w
- UF_CALL ( UF_EVAL_ask_arc ( arc_evaluator, 4 k$ s0 p8 Z9 b5 W; ~0 y5 b
- &arc_data ) );
# L- m2 L& E9 V" P! o; F. M - UF_CALL ( UF_EVAL_ask_line ( edge_evaluator, ( p v' u3 ~5 u& y& n- C3 }: U
- &edge_data ) );
6 [2 @5 f% `$ w j - }$ v7 h- m% k% U" Y- w+ j( k
- /*
& m$ V3 }8 b. n! S. p - Check line/arc/edge periodicity.
: ~: r1 m0 L8 d& n9 A - */3 Z# U" Y5 d9 @1 C
- {/ J* E6 S0 Y" S2 M
- logical is_periodic;4 Z4 Q# q2 ?8 Z8 N
- ' b8 b' A+ A0 V& p
- UF_CALL ( UF_EVAL_is_periodic ( line_evaluator, + ` Q- r1 \; d0 B; y
- &is_periodic ) );
X* l1 W& m$ c0 y+ N- a - UF_CALL ( UF_EVAL_is_periodic ( arc_evaluator, 7 |8 z* m9 X; r( z! I% j) j( e
- &is_periodic ) );
; j3 ~" D( [( F, F9 p& t- W - UF_CALL ( UF_EVAL_is_periodic ( edge_evaluator,
+ p/ h, W6 U5 g. f$ ~+ `8 [ - &is_periodic ) );9 u; r/ W) u* U) F
- }$ v, X ]; N% a* P
- /* 1 j. ~6 X( l0 O) m' x4 ~! |
- Evaluate line/arc/edge.9 n' z) q% E+ l9 |. Y- X! D9 z7 q
- */6 F |, X7 D( s* H% w8 v1 B. B
- {( z) C8 n s0 E, w( K" }! b3 y
- double limits [ 2 ];
" b. O$ `3 o0 H* X8 c - double mid_t;) U) Y2 n1 v6 \; l" R* u
- double point [ 3 ];7 \* l) J1 Q# f! @1 K) _
- double derivative [ 3 ];
; ~! G6 p6 L2 u" e- @ - double tangent [ 3 ];6 H& F, P: ?& ^( J+ A
- double normal [ 3 ];
5 @* t1 i3 d, Z, Y4 G8 {" N n - double binormal [ 3 ];. A8 a5 T' d" m: ~' X0 X6 J
- UF_CALL ( UF_EVAL_ask_limits ( line_evaluator, limits ) );; u' }! Y0 h0 S8 B w
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
# Z# h% [" a% R& n2 R5 @$ q4 | - UF_CALL ( UF_EVAL_evaluate ( line_evaluator,
& `# s4 s: l0 k+ }4 Z# ]" d* a9 V - 1,
; ^! {) t8 V5 H - mid_t,
& H+ N- c, T! ? s9 x F - point,
5 L" Z/ b6 s" o( ]0 L - derivative ) );% L0 e0 U, A0 O+ E) E
-
$ p8 S' ^; q% X+ i - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( line_evaluator, 7 y, Q- D; I$ s+ n) t
- mid_t, & H |% f5 n' [, z1 a
- point, / n; V, I$ x- R( J
- tangent, 0 Y/ M" Y. Z' c$ N- K$ b% Z) ~
- normal, * c3 H* V5 j8 y
- binormal ) );
- Q/ r$ Q6 e! S: c/ B$ S - UF_CALL ( UF_EVAL_ask_limits ( arc_evaluator, limits ) );- x% G$ P( I5 f, X) X: Y
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
3 d' z8 R5 e4 m8 V( O - , u; H( x4 A! w: L9 e
- UF_CALL ( UF_EVAL_evaluate ( arc_evaluator,
: C# K, D' [3 \ - 1, ) B8 {; |. j6 |* V
- mid_t, ) c% M" U( }7 M N$ X k4 {
- point,
% V: W* t! @ @" [ - derivative ) );" ~! C9 p" ~+ z" `
-
# }5 e# e3 i. _+ v) Q8 Z - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( arc_evaluator, 2 t4 T$ ], M% n# L/ |
- mid_t,
5 `& I8 p# g: R - point,
9 q2 {+ c' n) _! T! m# k' e/ [- r$ q - tangent,
0 }6 d0 D V8 f9 y8 G# G, S) q - normal,
$ J& E5 j' X! F9 D9 h, q - binormal ) );
1 O; d$ u( w$ k9 N - UF_CALL ( UF_EVAL_ask_limits ( edge_evaluator, limits ) );
" @% Z- D! d! S1 T- A! v - mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
; h6 N _8 W0 l) h" U6 v% Q - UF_CALL ( UF_EVAL_evaluate ( edge_evaluator,
0 ]6 y! a# V* j9 i* W& _+ I# P2 W - 1, % u( e* ^- F& N+ D E( {
- mid_t, # {% X8 Z P* J$ ]! Z* j, ~
- point,
8 _+ N' q( I: ~5 m" v" h - derivative ) ); G) J2 ^- J6 X* q
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( edge_evaluator,
, t% q& @5 h {6 _( G7 k - mid_t,
; q6 p! Y' m5 ^0 Y; w& Y - point,
2 W2 y$ J, p& ^/ M m - tangent, + j3 I- @: K I9 p( q
- normal, 9 H3 f4 q$ j9 S! W
- binormal ) );
2 M# z7 W: ^1 s - } ^8 O& S0 x* P! q; }
- /* ! f! T1 R! b" ]# w6 B0 L0 B
- Check line/arc/edge equality of evaluators.5 s! a m& s! d
- */. q& S0 K+ `. a5 e ?( H
- {
1 F" x) k" t+ h U( M+ A. t - logical is_equal;/ c+ S- ]2 b# S9 N, t( M# Q! D/ _
- UF_EVAL_p_t line_evaluator_copy;
u( y; S/ s) c - UF_CALL ( UF_EVAL_copy ( line_evaluator,
! b: C0 i; R: U - &line_evaluator_copy ) );
1 i: x6 z" ]9 R2 u0 q, n1 N6 s - UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
, e3 ^3 s! I2 W8 g' C - line_evaluator_copy,: [6 K/ S& v; _) L6 K
- &is_equal ) );
# u) n) H$ a/ P7 k7 _9 L3 b0 z2 l - UF_CALL ( UF_EVAL_free ( line_evaluator_copy ) );
+ e- V6 }7 h& R3 f! m5 i; J+ R - UF_CALL ( UF_EVAL_is_equal ( line_evaluator, & m0 f$ Q; Q2 R5 e; B
- arc_evaluator, & k4 A7 T V; e1 [! f
- &is_equal ) );9 l( T- u/ V- o1 X
- UF_CALL ( UF_EVAL_is_equal ( line_evaluator, e S: X$ W7 b
- edge_evaluator, 8 d) c, c0 U) h; c1 u
- &is_equal ) );
9 o0 k1 W0 I' o1 j - }9 b2 M7 m4 g% g, U( T/ A" @0 b
- /*
9 f- @: Z1 _* F. f% P+ I - Check line/arc/edge type.
5 P6 H, G8 q2 b. u) o5 _ - */) ~6 h2 O/ G) E) K1 X
- {$ |& {$ v% W, I& J7 Z
- logical is_line;9 l+ m* x% h2 E
- logical is_arc;# n+ _: p6 ?: B: S& i0 G
- UF_CALL ( UF_EVAL_is_line ( line_evaluator, &is_line ) );; s" K3 i3 v! W+ f* h7 f- G
- UF_CALL ( UF_EVAL_is_arc ( line_evaluator, &is_arc ) );
8 v Z- U2 Y# W$ [ R6 O - UF_CALL ( UF_EVAL_is_arc ( arc_evaluator, &is_arc ) );
9 |) F! Y: Y2 ^7 H2 n" U - UF_CALL ( UF_EVAL_is_line ( arc_evaluator, &is_line ) );
, O5 N2 {3 m8 N; U5 \ - UF_CALL ( UF_EVAL_is_arc ( edge_evaluator, &is_arc ) );& n- @/ d8 K% j3 b! O. @* P- @8 e
- UF_CALL ( UF_EVAL_is_line ( edge_evaluator, &is_line ) );
" c! l: m; V8 f( c5 X1 s* K' \ - }
7 |7 m4 v# a& |! j - UF_CALL ( UF_EVAL_free ( line_evaluator ) );
0 g) T" Y* y q; B9 m1 _: D4 ]. i! M - UF_CALL ( UF_EVAL_free ( arc_evaluator ) );2 m- ~: }. c! E5 @
- UF_CALL ( UF_EVAL_free ( edge_evaluator ) );
$ G3 O& ~9 O5 N, H' |- t - UF_CALL ( UF_terminate ( ) );& f% p( V% ]5 W
- }; X, g5 x# e3 i
- " s1 M4 Y% p3 b+ a$ _3 E5 d- Z# r
- /* This function will disply n_pts equally spaced along the+ ~. S' u5 V4 b) C3 |. w7 e5 S9 |. a# \
- input curve.6 J6 G& J `! `) }/ H ~9 \
- */
4 D" }" X3 g6 o+ ? - static void show_edge_points(UF_EVAL_p_t eval, int n_pts)0 E2 }/ [. ]# h) d1 {$ U, @: s
- {/ `; w+ C! t7 b, l( ^% z
- int ii;
' g! h2 e7 e$ P - double limits[2], p, point[3], end_parameter, start_parameter;/ S+ W6 r" C) r" W4 z2 t
- UF_OBJ_disp_props_t
- E' H9 n- G' j) e9 n1 R - attrib = { 1, UF_OBJ_WHITE, UF_OBJ_NOT_BLANKED, UF_OBJ_WIDTH_NORMAL, i2 T7 y& H3 k
- UF_OBJ_FONT_SOLID, FALSE};- e- g, r+ x& K& a5 j
- & B# E) v! K0 z1 v v9 G
- UF_CALL(UF_EVAL_ask_limits(eval, limits));
9 A( y. m& k4 }% m4 q! Q' Q - printf ( "limit0 = %f\n", limits[0] );5 K: W; C c/ x# q$ i' ]9 Z/ I: W
- printf ( "limit1 = %f\n", limits[1] );. f( E, Y6 K2 M9 X$ i6 w5 V+ o) ?
- start_parameter = limits[0];/ {& Y* j# \2 P' b5 w) K I! @
- end_parameter = limits[1];# J: Q- U2 y$ s! [8 ]! L
# N! \ [! O% x6 C" P \- for (ii = 0; ii < n_pts; ii++)
& o; c8 X+ Z; {; ~! ~4 ^ - {
3 W/ T0 @9 p4 Z ~ - p =start_parameter + ii*((end_parameter - start_parameter)/(n_pts - 1));9 ?. G9 Y% v0 u
- printf ( "evaluate = %f\n", p );
4 Z; S5 \ W+ R - UF_CALL(UF_EVAL_evaluate(eval, 0, p, point, NULL));
7 O* b; \. P1 v( e! e - UF_CALL(UF_DISP_display_temporary_point(NULL_TAG,
v& n* M4 o, w& I9 G - UF_DISP_USE_ACTIVE_PLUS, point, &attrib, UF_DISP_POINT));
. N+ Z% @% ]! S8 [+ | - }4 \, k/ ]$ |0 [/ }6 H2 @4 f& y
- # s" s T9 V$ O9 Y) j
- }
6 N" f$ k% v* Z5 l, p
复制代码
, c' I/ D, x+ p. I- |0 m( F( {; |, p8 a) P% z3 ?
u, [( w s7 Y |
|