|
请使用QQ关联注册PLM之家,学习更多关于内容,更多精彩原创视频供你学习!
您需要 登录 才可以下载或查看,没有账号?注册
x
( z7 G; ` s! T3 w
1 }- S! Y" @0 D! E9 k' D) ^/ D0 q( K
* n8 J9 q! E2 {" T2 B
- /******************************************************************************' s' m# p! N$ u5 a7 c. S
- Copyright (c) 1999 Unigraphics Solutions, Inc.
1 A7 A) U" r% X. U: C - Unpublished - All Rights Reserved
- b- e& I: U4 i
$ k4 Z' t# c( U4 T- *******************************************************************************/# f2 \& `, }8 k
- /* This example demonstrates the UF_EVAL api for lines and arcs.8 `; |7 t% S; \7 j$ Y4 @! T: ~
- Some of the UF_EVAL routines operate on an evaluator% Q* B" w+ @) q1 q U" l$ F
- independent of type while others are type dependent. No longer use" I, ^( @( I: O# D
- UF_CURVE_ask_curve_struct ( ),
7 M% o2 I7 i- l! D* E; D - UF_CURVE_ask_curve_struct_data ( ) and
$ d) ]: T3 v. m2 B% O q' E; ? - UF_CURVE_free_curve_struct ( )) w5 z& ?9 v3 ^+ [: D& P) a
- */$ e1 @: h7 w; P6 P; d/ K9 i
3 B* P9 R7 V3 A7 O Z- #include <stdio.h>8 o, b4 N* F8 C
- #include <uf_object_types.h>! c; t" o& f( x) y
- #include <uf_curve.h>/ }0 c; _2 H$ B& e
- #include <uf_eval.h>
0 G: b: h% |2 `( |2 w/ W - #include <uf_modl.h>
! r3 P- k9 o: m# S" P - #include <uf_part.h>
( p u. M; j* R - #include <uf_so.h>, j9 C- X5 A; q
- #include <uf.h>: s9 T Q/ _3 v2 d k
- #define UF_CALL( X ) ( report ( __FILE__, __LINE__, #X, ( X ) ) )$ Q& F7 w1 E- s% {4 S* N7 f' A, t% s
- static void show_edge_points(UF_EVAL_p_t eval, int n_pts);
+ _- `/ b" f9 c7 m" p4 O% s - /*---------------------------------------------------------------*/& ?5 Q3 ^& o- t, F/ |! U
- static int report ( char *file, int line, char *call, int irc )
7 `5 ]8 U( O, q: R3 B - {( L" x P. m2 E- I$ p
- if ( irc )
- v* ?( c+ Y- a& V! u. V - {
# F% ~2 ~. t( ~# k: O# Y0 p - char message [ 132 + 1 ];" L5 k0 |6 i8 E6 A; w
- printf ( "%s, line %d: %s\n", file, line, call );
# \, ?. C2 i3 E X: T - UF_get_fail_message ( irc, message ) ?2 t# R8 _1 R" F* x
- printf ( " error %d\n", irc ) :' M$ t( L, M7 K& v, k! e0 x& U
- printf ( " error %d: %s\n", irc, message );
! g, Q) C" y0 B' i - }
/ e9 G8 \# c( L' q4 _! p8 d - return irc;
% p+ W6 k$ R( D" l4 ?$ X - }
& H6 Y% D6 Z, W V# ~" e0 R$ h3 ^4 ?4 w - /*---------------------------------------------------------------*/0 h6 g. M% M' A$ Q0 I& c4 A. P- M, a
- int ufusr_ask_unload ( void )# v2 H5 v2 k9 `6 f* I+ `
- {+ ?, k) ?- R; A, i8 Q3 g7 t/ X
- return UF_UNLOAD_IMMEDIATELY;
; L# b2 [$ t" k$ f; D7 {# _0 M4 V5 v - }
1 C/ m% O' u E: ^* g" D - /*---------------------------------------------------------------*/
, v3 F$ d2 M0 J' j5 A7 T/ K - /* ARGSUSED */, H7 N0 t& a b- ~* ?1 C& R" e
- extern void ufusr ( char *param, int *reTCod, int param_len )
& G, I, ^. a( X$ z$ [1 H; q - {+ n+ ?# b, u8 j5 t5 c9 g6 r
- tag_t line;4 W2 @) u( g# R; g: s& v
- tag_t arc;
( h& \! q( A- q0 J: M! [( I - tag_t edge;4 Z9 v' b% N+ K4 G
- tag_t edges [ 3 ];
' ?- a: u7 R8 \. ]4 b3 t/ F0 R - UF_EVAL_p_t line_evaluator;# X/ ?$ u& i( j7 j
- UF_EVAL_p_t arc_evaluator;! C' d/ b' U) G7 g2 {
- UF_EVAL_p_t edge_evaluator;% ~$ n, O+ y8 O
- UF_CALL ( UF_initialize ( ) );+ ?$ i' Y* Y4 P( k2 a
- /*
3 X) J( x6 F! w0 s, a# ^ - Create new part "ufd_eval.prt".
- u3 A3 E; h" p( x/ h" {: y9 i+ O -
3 Q4 O" ]% L R& u1 O. u) ?' {( y - Close part if it already exists.
* ]0 B/ h# n/ |8 j - */
9 Z2 Y: S+ B0 s5 H - {
# d6 x" k8 e0 D0 {1 h0 y2 A- c2 D' h - tag_t part = UF_PART_ask_part_tag ( "ufd_eval.prt" );
! o: X+ y- {, v( A: T. |7 h$ L - if ( part != NULL_TAG )
; J$ z% J5 L" Z& I/ w4 N - {5 [9 `& I2 n5 c* P
- UF_CALL ( UF_PART_close ( part, 0, 1 ) );- x, F* _& _$ _3 B, \/ T9 M+ g
- }
3 o$ ^" G( j8 W- }$ [ - UF_CALL ( UF_PART_new ( "UGd_eval.prt", 9 y" c$ h& m" B
- UF_PART_ENGLISH,
/ D9 l3 Y, d* q: E - &part ) );8 N# y- s5 A# T* p5 G8 ^ s$ W( l0 Z% C
- }! ^# S# P$ e- P+ I: z* g2 l- n- g
- /* + p. J, k- ?* V3 y& G1 K8 v
- Create block and get edges.
* a$ `8 H# X" V0 l6 v: O9 a0 x' ? - */0 ^) G, [9 |0 c2 X: R4 z2 a4 B
- {5 f0 K. x) o3 O$ {5 l& m; i
- double origin [ ] = { 0.0, 0.0, 0.0 };
, [- `" r# o: i - char *sizes [ ] = { "1", "1", "1" };* o; r q" k# g3 n+ U
- tag_t block_feature;
3 Y; [8 F4 Y# g4 {1 O -
8 p3 m0 [& W5 l& M - UF_CALL ( UF_MODL_create_block1 ( UF_NULLSIGN,
# f; L4 {5 r1 y) b1 c0 B/ } - origin,
$ H6 t4 w8 b, E2 O/ T: y6 }: J - sizes,
4 V5 U* X$ `) {$ P5 S - &block_feature ) );1 _: `5 P" C8 C6 m
- {
# ~ B& ^* j4 S" a V& ~" N - uf_list_p_t edge_list;. u# l4 M/ l6 y, K% B
- UF_CALL ( UF_MODL_ask_feat_edges ( block_feature, # Q- p% b7 I: ~5 U; E4 I
- &edge_list ) );( E* m. u/ G1 m7 N$ R: d
- # {9 t* j9 s4 |( V' f! D9 Q. x3 ~
- UF_CALL ( UF_MODL_ask_list_item ( edge_list,
, o4 \* y+ X; U - 1,
8 \7 k0 z8 ?- `5 a - &edge ) );
) o( _) e+ q% P5 L) Y& L& I - edges [ 0 ] = edge;
2 Z5 Y+ L) P! e/ m - edges [ 1 ] = edge;
( ^# W* Q* F% T - UF_CALL ( UF_MODL_ask_list_item ( edge_list, 7 G6 x& f/ t& Y: X& _ O
- 0, 1 _" s9 @7 M& M: E9 m: I6 B
- &edges [ 2 ] ) );1 X; W# R( y+ X i
- UF_CALL ( UF_MODL_delete_list ( &edge_list ) );/ }' Y1 W3 e! s% x5 ]
- }
. |# }: g3 \1 }( F* ^ Q - }- y; R) v. `' @7 k( C& d
- /*
- K+ E0 l0 ?" ?) | - Create smart line.
. R }, e: C( p0 M I- s9 G - */& l" `/ `# O" ^# a
- UF_CALL ( UF_SO_create_curve_extract
% q1 S% }# w0 w2 r - (
, _7 n' `/ l* ?- g' s" q# ?% f9 F - edge, 6 d: m8 S/ f! m, S. w& V
- UF_SO_update_after_modeling, 9 ]" ?* Y6 F5 G j6 O' g
- edge,
% ?% r9 e7 o: h0 M - UF_line_type, /* enforce line type */
* g* D8 L. B# V - 0, /* no subtype to enforce */2 N* \" D8 S' L$ e9 w& S2 I
- NULL_TAG,7 r8 f) G' t0 N% s+ \
- &line 5 y3 T R1 q* }6 V# q) v* M
- ) );4 W, p. b9 K' z K0 v# a
- & U( x, B3 f/ u9 ~7 z6 z: G* R# a0 N
- /* 7 q5 t2 b3 k0 }! C0 r5 Z f8 |2 D
- Create smart arc.- w# U: I3 ?7 _# _
- */1 w- q/ P4 T% S7 E0 y
- {- ~5 O# J- {* b; o( U/ I+ l9 v
- int i;9 {2 L' z8 U8 e& G5 w
- tag_t points [ 3 ];& Q) g3 g, {2 B* U* X: X
- for ( i = 0; i < 3; i++ )
+ P: w1 g3 w- I: J; s C4 J* n* t! F - {0 f; Q: _+ K& a
- char *strings [ ] = { "center=1.0", / P+ K- S2 _3 s# H5 [1 u
- "start=0.0",
2 y6 T3 Q* b- J - "end=1.0" };
. t8 j3 X' ~( R. o7 y, }. @" u( x - tag_t exps [ 3 ];
8 ^# K7 U( a4 q# X7 H6 B - tag_t scalars [ 3 ];4 H r$ l. {7 p+ b. \! }: e
- UF_CALL ( UF_MODL_create_exp_tag ( strings [ i ], " N6 F5 P$ k- S5 B! _1 M
- &exps [ i ] ) );' y2 N! C2 @* V$ e e/ v6 M3 `$ G# N9 Y
- UF_CALL ( UF_SO_create_scalar_exp - {! @5 }3 r/ I; J7 b% ^
- ( 9 s ~: p; b5 ?2 O6 V5 y
- exps [ i ],, j* j& e7 l3 r7 F, f7 g
- UF_SO_update_after_modeling, $ [4 r5 z: V* x m4 H
- exps [ i ],
) A- }+ O9 Y4 P& h - &scalars [ i ]$ E! ]% m5 l& @6 ]1 Y' I
- ) );; L. W E6 M* @- Z7 T. t
- UF_CALL ( UF_SO_create_point_on_curve
H# P0 c& ~! ]6 Q( q - (5 `1 w( ~4 T9 F1 L+ b. D' f
- edges [ i ],* ?' }" c9 M/ Y b5 q
- UF_SO_update_after_modeling,
4 M, u) R) ?9 V }6 s0 W% F0 s# [ - edges [ i ],
7 |$ @0 a/ \( |+ }+ i9 U1 x - scalars [ i ], ( M, V+ X& `7 F g
- &points [ i ]
" l/ B8 ~) x# @5 f% K - ) );
6 W: K/ `6 V) j/ ] b) n - }
+ c9 Y3 a7 l0 z' ` - UF_CALL ( UF_SO_create_arc_center_2_pnts e' }2 B2 R" B; ^8 R
- (
1 ^2 p$ `' x+ ? - points [ 0 ], ( G/ e3 {( D$ }
- UF_SO_update_after_modeling,7 ^2 ^) o+ F5 T2 \# u( B
- points, , ~5 e! J6 R0 L9 Z
- &arc 7 v# H" S! X/ b m. x- V
- ) );
1 v8 ?! x: R" y% z - }1 ?% k# w! o% L% ~
- % W; V" `. S8 `0 u
- /*
% p$ |5 l& p5 B% p - Smart objects are created as invisible objects by % [0 [ l- Q2 {" n$ Z
- default. UF_SO_set_visibility_option ( ) can be : \. [3 P3 \! J4 Q( }, O G
- used to make them visible in the graphics window.
8 p- V& d6 B( R9 t" q4 s - */
+ x; j" z+ x, w) D9 ^; @9 `1 c$ y3 j - UF_CALL ( UF_SO_set_visibility_option ( line, 6 w) m {2 k; a3 ]* x4 d. v
- UF_SO_visible ) );
9 J0 }; R3 Y2 q% M2 b - UF_CALL ( UF_SO_set_visibility_option ( arc, - k- x0 r0 m- k$ W: `
- UF_SO_visible ) );4 P: B0 R! U! P# n: E- [5 g# z, R
- /* # B) H/ O& C) Q4 }% |
- Get line/arc/edge evaluators.1 q, {+ D' H$ w: r2 g
- */% ~! D" w! q* v1 T" g* x
- UF_CALL ( UF_EVAL_initialize ( line, &line_evaluator ) );
1 K$ K& n0 f* S: ?% V9 w" j - UF_CALL ( UF_EVAL_initialize ( arc, &arc_evaluator ) );
, K/ Y x4 Y# ?# g2 O8 v7 m - UF_CALL ( UF_EVAL_initialize ( edge, &edge_evaluator ) );- k- `- D7 d+ P! G
- show_edge_points(line_evaluator, 10);0 Y I d7 u8 M5 f/ a
- show_edge_points(arc_evaluator, 10);
" \5 S- d! ~" D4 n: _$ ` - show_edge_points(edge_evaluator, 10);
8 Z5 q F4 q" }5 n9 ?0 H* x& s - /* * j# h; `3 F1 Q N3 A, e
- Get line/arc/edge data., V2 x: w, w: I$ d6 e2 m% E
- */* H$ L) z! ]0 |* \
- {% l, _! j9 K8 n. _8 t4 j
- UF_EVAL_line_t line_data;
3 D! ?! G- E8 X+ R& w4 h( I7 x0 u - UF_EVAL_arc_t arc_data;0 m* z% Q$ K: J; B. I
- UF_EVAL_line_t edge_data;1 V3 Y, L! j" ]2 L
- UF_CALL ( UF_EVAL_ask_line ( line_evaluator,
" a: u3 n6 b! C2 W2 q0 h - &line_data ) );
" e. @3 M1 L6 b: {0 y& q2 N - UF_CALL ( UF_EVAL_ask_arc ( arc_evaluator, # }1 F- U8 i/ ?& F2 n
- &arc_data ) );
) m3 r7 {/ W$ o" F! q2 M* D+ I - UF_CALL ( UF_EVAL_ask_line ( edge_evaluator, 3 z$ m" I. z* k z
- &edge_data ) );
* c( J% y" Z/ E; ^3 O, h3 R - }
7 J2 F: ]1 n9 E* z' ^! H# e5 g - /* / c: s' K8 C& ~3 Q2 Y( ~; @+ I. r' U7 K
- Check line/arc/edge periodicity.
5 o+ M$ N4 L0 y - */0 o8 Q: v4 Q& d _# r6 F2 f
- {
/ M, k- f, m2 \1 G( n7 x+ d0 J9 ~ - logical is_periodic;2 ~5 v) `: f4 K- R5 d
-
: d! [: W3 U# T5 i - UF_CALL ( UF_EVAL_is_periodic ( line_evaluator,
5 q v i- o7 l8 _ - &is_periodic ) );
6 {% t1 s/ r# F7 `7 n - UF_CALL ( UF_EVAL_is_periodic ( arc_evaluator,
B. r$ U7 j4 Y: ?( ~ - &is_periodic ) );, W$ p) I' \5 G( v4 I7 d* g
- UF_CALL ( UF_EVAL_is_periodic ( edge_evaluator,
' F+ i! }! W4 b6 ] - &is_periodic ) );
+ L1 _2 j7 W4 d4 a - }* t) A3 B; z9 i* g; K T
- /* `/ S5 c K: u; u' Z
- Evaluate line/arc/edge./ b* ^& k1 ~6 w- E
- */
" ]# R. } g0 \- y& Y5 j6 v - {. }* J, ]6 V7 ]- y- h' n
- double limits [ 2 ]; : [: |6 A. g# N/ \7 @8 D0 T+ w
- double mid_t;" \- l8 E- Z! v' M/ X: Z5 C* D
- double point [ 3 ];
. A+ W$ s8 R! w, f4 X. r% `9 i - double derivative [ 3 ];0 P: [$ F0 C) e* V, P
- double tangent [ 3 ];6 ~7 h" i# h* t# K
- double normal [ 3 ];
( f- P# H. g M6 I, B$ i - double binormal [ 3 ];6 ^, ~: h: d0 s/ y) J
- UF_CALL ( UF_EVAL_ask_limits ( line_evaluator, limits ) );% F7 m) ~# y7 K9 ~) m( t+ }: ^
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;0 v% H, {: [+ B
- UF_CALL ( UF_EVAL_evaluate ( line_evaluator,
& m) s+ ~, v& D4 }! i - 1, 3 A V$ C" s# `. l v
- mid_t,
8 J6 N* I% r& Q* J - point,
6 n/ ~" c0 _1 T! X; K7 a' @ - derivative ) );& a: w5 n! w7 U7 M7 s( v4 k) y, _
-
3 [+ b( C9 _+ P7 L - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( line_evaluator,
! ?0 Z8 G1 F6 |' u- ^1 \& Q - mid_t, 8 q, J9 g2 C' e; H# `
- point,
o# s+ ?; c r5 M$ ^9 s+ V - tangent, # e5 w: w: j( @* s4 X
- normal,
! g6 e8 y& c' k; l" w2 c% ~& ^ - binormal ) );
4 I8 a8 w, Z+ `. z A g - UF_CALL ( UF_EVAL_ask_limits ( arc_evaluator, limits ) );4 ^3 e" Q9 D6 E& a0 V: h% o2 R+ `
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
- q' L) ?: C6 K - , U ^0 r2 g& \
- UF_CALL ( UF_EVAL_evaluate ( arc_evaluator,
2 I& \. @9 t% ], j! U* z, z - 1,
/ w% ?: c) Z/ v$ D u1 k5 n8 w" ] - mid_t,
9 M5 p" V$ E$ F - point, : {( D* i2 l& c) J
- derivative ) );! @& S" D. A, M8 N
- 4 [& g8 w; e1 h O) G- y, {2 E+ }
- UF_CALL ( UF_EVAL_evaluate_unit_vectors ( arc_evaluator, & U. D8 Q) Z- X# {! ]6 ^( X) P
- mid_t,
& m; p( t5 t* V - point,
1 B; c6 O. w+ a v" L - tangent,
( B; N* D% T s+ T B' `: d - normal,
% t, k$ }3 a& | Y- c- {. m, U - binormal ) );4 e$ K2 y# x O J
- UF_CALL ( UF_EVAL_ask_limits ( edge_evaluator, limits ) );# u8 v! W* e: B; N# ?* d8 J+ k. M" G
- mid_t = ( limits [ 1 ] + limits [ 0 ] ) / 2.0;
9 @- U1 b; {" t5 I9 ~ - UF_CALL ( UF_EVAL_evaluate ( edge_evaluator,
' a0 U c( a: }4 c. `" ?1 M. Z - 1,
: c3 P* o6 n2 o. l6 w' f - mid_t,
0 s% d: O5 h# q/ f, o3 F - point,
( w* d. L2 d3 L7 C$ c - derivative ) );
: k9 m; g* h1 j - UF_CALL ( UF_EVAL_evaluate_unit_vectors ( edge_evaluator, 3 L! b- }+ B# K% K. ~, ?+ n
- mid_t,
5 ^) q/ T' E; y" B6 B+ b& e% y, _ - point,
! D5 z, [. R: b0 E. j B! n, D - tangent,
- }" s# M4 f4 _4 w. ~, r3 S - normal, ' l$ B& _; P7 S+ g
- binormal ) );; L. W' x% C$ o3 `4 U/ _/ u8 a, v. ?) o% c
- }8 N" F8 f7 r" ^2 r' f3 F
- /*
% ~& Y* T9 V5 v! g# i2 {7 S4 w9 D# t - Check line/arc/edge equality of evaluators.
+ }7 b7 N2 m7 c3 V) u" x& Y C' n - */* @( }2 D& \. k6 z* ^( w. M; M
- {
0 N! n8 d8 _$ j9 H2 ~2 L5 S4 P. C; V - logical is_equal;
& Y0 e1 m3 C3 a) b8 J3 ]! r" f - UF_EVAL_p_t line_evaluator_copy;$ v$ @% {7 e/ j! c7 r, {) ]# ?
- UF_CALL ( UF_EVAL_copy ( line_evaluator,4 r% T$ x% i2 C
- &line_evaluator_copy ) );
$ x: H6 |! \/ c: @) q: y - UF_CALL ( UF_EVAL_is_equal ( line_evaluator," Y y/ I6 Z( L4 f2 l; Y
- line_evaluator_copy,( [% P/ O1 n: t$ k5 z u
- &is_equal ) );3 U( z4 z7 O0 G; J2 ?
- UF_CALL ( UF_EVAL_free ( line_evaluator_copy ) );
3 u. R/ r1 v! q5 A/ m4 c - UF_CALL ( UF_EVAL_is_equal ( line_evaluator, 8 Q" t+ Y" q6 ?6 \! G* ^
- arc_evaluator, - z: \3 G2 C" ^( |* d5 `5 `
- &is_equal ) );
( G* e1 X1 }% f1 D, n2 ]8 c - UF_CALL ( UF_EVAL_is_equal ( line_evaluator,
a9 k: }! _1 Z+ N3 \ - edge_evaluator,
% ~* {0 a5 }; _! H7 r - &is_equal ) );
, e; [7 Z% D1 r. Q7 E8 I - }9 k! V( f8 z/ |$ G5 U7 o
- /* % O, y. q" E% l3 y
- Check line/arc/edge type.
0 T4 d, o% v" J - */
) @5 ~6 f D$ r9 W - {
/ I5 m# J0 i" y$ p) H+ t( f - logical is_line;! _) ]4 i# T" W* O/ m9 [
- logical is_arc;
: F: c+ X: v9 y( f+ O. T - UF_CALL ( UF_EVAL_is_line ( line_evaluator, &is_line ) );$ d& E: I+ N6 E6 j$ ^9 H
- UF_CALL ( UF_EVAL_is_arc ( line_evaluator, &is_arc ) ); i& S! {" m- |+ [) s# d& \6 T2 U
- UF_CALL ( UF_EVAL_is_arc ( arc_evaluator, &is_arc ) );. A0 `: E5 V* s' t
- UF_CALL ( UF_EVAL_is_line ( arc_evaluator, &is_line ) );6 q: K6 M. @4 r) u6 W( P( K* `2 N
- UF_CALL ( UF_EVAL_is_arc ( edge_evaluator, &is_arc ) );7 U' B2 l: R1 |6 S' }5 V
- UF_CALL ( UF_EVAL_is_line ( edge_evaluator, &is_line ) );4 \# B! \4 l$ |5 Z
- }9 z- ^! z- ^6 i* f
- UF_CALL ( UF_EVAL_free ( line_evaluator ) );: [9 D0 V& d! f: q& V, h- q# X
- UF_CALL ( UF_EVAL_free ( arc_evaluator ) );
& x. s* a9 B2 |* \5 D - UF_CALL ( UF_EVAL_free ( edge_evaluator ) );( w5 f9 a( o7 T
- UF_CALL ( UF_terminate ( ) );2 {2 P& l9 E" t8 _1 ?
- }
6 n' E" H8 I& u& K
; o( e1 n N& ]9 g. M1 ?, `- /* This function will disply n_pts equally spaced along the
" s. d, t9 V, o1 T - input curve.
) d6 Q- t7 D. F9 o$ h - */
/ K0 c ^( H7 e9 u& o% ~/ r - static void show_edge_points(UF_EVAL_p_t eval, int n_pts) K* E6 L' D. e# _/ @
- {! u) ^$ e9 T0 s9 ]
- int ii;
; t" _/ {* p( M, s - double limits[2], p, point[3], end_parameter, start_parameter;
- m; w* x1 R2 f6 A - UF_OBJ_disp_props_t
- p7 G( ]1 U% ~7 u- g+ B" V - attrib = { 1, UF_OBJ_WHITE, UF_OBJ_NOT_BLANKED, UF_OBJ_WIDTH_NORMAL,
, i" q' e! e! @4 ~, }- l& ~ - UF_OBJ_FONT_SOLID, FALSE};$ h7 H9 h% {9 w# @! ^
- & l3 \3 Y% E; Q% D& |! M+ o
- UF_CALL(UF_EVAL_ask_limits(eval, limits));3 o ?4 R1 I' E. `' m
- printf ( "limit0 = %f\n", limits[0] ); F1 |( m. `, _ J6 d* A9 h9 \
- printf ( "limit1 = %f\n", limits[1] );
& o# \- R2 a* u0 V3 A3 i; u3 ` - start_parameter = limits[0];& w+ a4 F6 U" {' c# s1 L4 n% B c3 A( B
- end_parameter = limits[1];
! B/ n( Q7 H7 ]7 ?& s - ! G# R/ n, k# T# p0 `% _9 n* S
- for (ii = 0; ii < n_pts; ii++)
3 t- T u' c1 r9 ?" h: L' | - {
) o- @9 K6 S3 }: J - p =start_parameter + ii*((end_parameter - start_parameter)/(n_pts - 1));0 l6 }* d6 w R0 w
- printf ( "evaluate = %f\n", p );
1 B( q0 Q+ Z% G. n- ^ - UF_CALL(UF_EVAL_evaluate(eval, 0, p, point, NULL));
/ W0 B5 q: b; X) y3 f. ^ - UF_CALL(UF_DISP_display_temporary_point(NULL_TAG,
, o0 g4 a0 [. Y, t) R, a - UF_DISP_USE_ACTIVE_PLUS, point, &attrib, UF_DISP_POINT));: c, z7 t+ m9 U; o; @1 D4 T. [
- }
5 o- V$ I5 K6 t% o2 I$ ^
" D+ W; C3 o1 O$ q2 B }9 K8 K/ ?- }$ n0 a5 j8 c5 L$ J
复制代码
( T3 e) e3 Q7 c+ d9 D8 m6 o7 T* r/ B" _$ c3 ^9 _
+ E2 R9 R7 u8 i; { z- n- y |
|